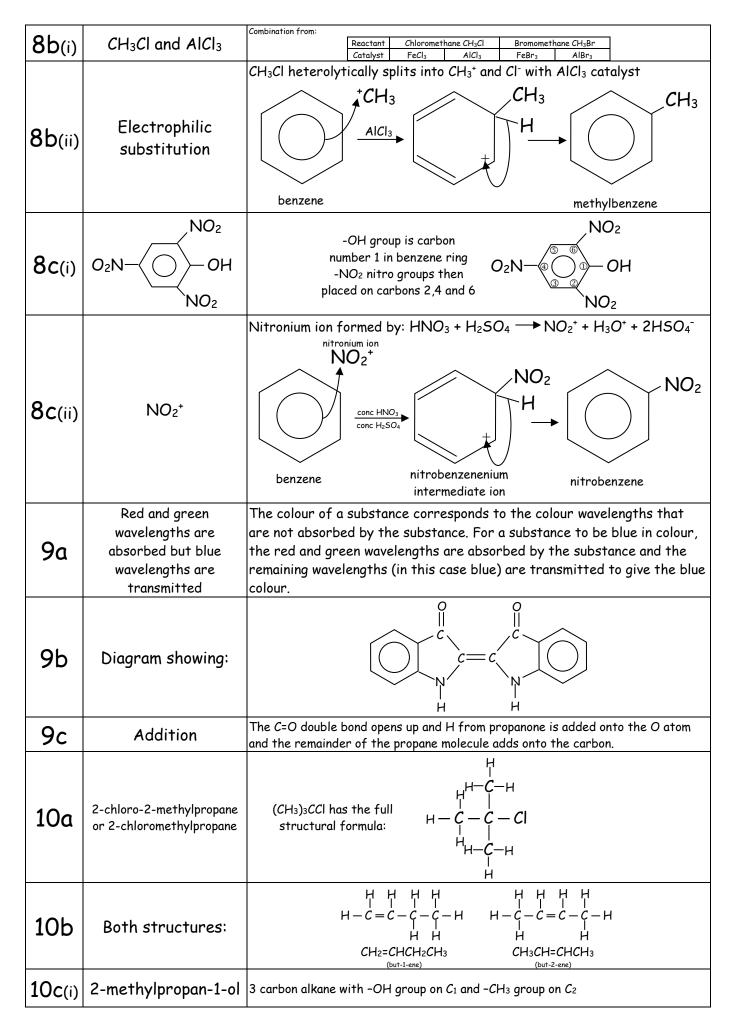


2015 Marking Scheme

Grade	Mark Re	equired	° condidatos cobiovino crado
Awarded	(/ ₁₂₅)	%	% candidates achieving grade
A	89+	71.2%	32.5%
В	75+	60.0%	22.9%
С	62+	49.6%	21.7%
D	55+	44.0%	8.3%
No award	<55	<44.0%	11.8%

Section:	Multiple Cho	oice	Extended	Answer	Investigati	on
Average Mark:	29.4	/40	33.8	/60	15.0	/25

20	2015 Adv Higher Chemistry Marking Scheme							
MC Qu	Answer	% Pupils Correct	Reasoning					
1	С	80	EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV Velocity 3x10 ⁸ m s ⁻¹ Wavelength short Image: Comparison of the short Image: Comparison of the short Image: Comparison of the short Frequency high Image: Comparison of the short Image: Comparison of the short Image: Comparison of the short					
2	D	92	\mathbf{E} A Sr= 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁶ 5s² \therefore Sr²+ = 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁶ \mathbf{E} B Se= 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁴ \therefore Se²- = 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁶ \mathbf{E} C As= 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ³ \therefore As³- = 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁶ \mathbf{E} D Zr= 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁶ 4d²5s² \therefore Zr³+ = 1s²2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁶ 4d ¹					
3	D	91	 A Each line is a particular wavelength of light from a particular energy difference B Electrons moving up a level absorb energy not release energy C The visible spectrum lies between the wavelengths 450nm - 700nm D Excited electrons dropping down release exact wavelengths as energy is released 					
4	A	88	 ☑A KCl electronegativity difference = (3.0-0.8) = 2.2 ∴ most ionic character ☑B NaI electronegativity difference = (2.6-0.9) = 1.7 ☑C BH₃ electronegativity difference = (2.2-2.0) = 0.2 ☑D PH₃ electronegativity difference = (2.2-2.2) = 0.0 ∴ least ionic character 					
5	В	77	A B C D Co^{3+} P^{4+} H^{4+} H^{4+} H^{4+} $Is^22s^22p^63s^23p^63d^6$ H^{4+} H^{4+} H^{4+} Metals rarely form H^{4+} H^{4+} H^{4+}					
6	С	73	covalent bonds pyramidal Trigonal Tetranedral Image: A BH3 has a trigonal planar shape. Image: A BH3^+ has a trigonal planar shape. Image: A BH3^+ has a trigonal planar shape. Image: A BH3^+ has a trigonal pyramidal shape. Image: A BH3^+ has a trigonal pyramidal shape. Image: A BH3^+ has a trigonal pyramidal shape.					
7	С	90	 CO3²⁻ has resonance structures but not in a trigonal pyramidal shape. A Group 3 elements like boron produce p-type semiconductors when added to Si B Group 4 elements like carbon do not produce semiconductors when added to Si C Group 5 elements like arsenic produce n-type semiconductors when added to Si D Group 3 elements like aluminium produce p-type semiconductors when added to Si 					
8	D	80	 A calcium salts give an orange flame colour B oxides do not release hydrogen gas when added to water C calcium salts give an orange flame colour D potassium salts give off a lilac flame colour and hydrides release hydrogen gas forming a strongly alkaline solution when added to water 					
9	В	55	Tetraamminedichloridocopper(II) = [Cu(NH3)4Cl2]no. ofNH3no. ofCl ⁻ metalCharge onLigands in formula areligandsligandligandsligandmetalCharge onLigands in formula areNeutral ligands include:Negative Ligands include:Central Ion:Charge:LigandNameCholoride Cl ⁻ chloridoPositive Complex:Charge of central ionOH2aquaLigandNameNameCharge:NH3ammineCl ⁻ chloridoRegative Complex:Charge of central ionNH3ammineCyanide CN ⁻ cyanidoNetals end in ATECharge of central intoNH3intrite NO2 ⁻ nitritoPositive Complex:Metals end in ATEcobaltate					


			Write down the main species involved in the reaction:	CIO3 ⁻	\rightarrow Cl ⁻				
10	10 C	2 81	Add H2O to other side to balance O atoms:	ClO ₃ -	\rightarrow Cl ⁻ + 3H ₂ O				
10	C	01	Add H^* ions to other side to balance H atoms:	ClO₃ ⁻ + 6H⁺	\rightarrow Cl ⁻ + 3H ₂ O				
			Add e ⁻ to most positive side to balance charge:	ClO ₃ ⁻ + 6H ⁺ + 6e ⁻	\rightarrow Cl ⁻ + 6H ₂ O				
			A solubility of X in each solvent varies differ	•	nt temperatures				
11	Α	90	B volume of water does not alter the partitio						
		//	EC mass of X will separate between the layers	-					
			Source of X will separate between the layers Source A silica is the solid which the stationary phase	-	•				
		/ —	B silica is the solid which the stationary phase	•					
12	C	67			-				
			 O / ☑C helium is the mobile phase and non-polar liquid is the stationary phase ☑D helium is the mobile phase which carries the hydrocarbons through the column 						
			A buffer: salt of a weak acid (sodium borate) dis						
12			☑B buffers need a weak acid but nitric acid is a str						
13	В		🗷C buffer: salt of a weak acid (sodium benzoate) d	-	acid (benzoic acid)				
			🗷 D buffer: salt of a weak acid (sodium propanoate)						
			🗷 A additional water should allow more solid to	be dissolved					
14	D	27	B the pH of a buffer remains same when dilu						
74	υ	21	EC a tenfold dilution would increase pH numbe	•					
			☑D the pH of a weak acid will increase after a						
			$\mathbf{\Theta} \qquad \mathbf{BN} + 1\frac{1}{2}\mathbf{F}_2 \rightarrow \mathbf{BF}_3 + \frac{1}{2}$		85kJ mol ⁻¹				
			$\Theta \qquad \qquad B + 1\frac{1}{2}F_2 \rightarrow BF_3$	∆H=-1	136kJ mol ⁻¹				
15	D	02	$\bullet_{X-1} \qquad BF_3 + \tfrac{1}{2}N_2 \rightarrow BN + 1\tfrac{1}{2}$	F₂ ∆H=+8	85k.T mol ⁻¹				
15	В	83	$\Theta \qquad B + 1\frac{1}{2}F_2 \rightarrow BF_3$		136kJ mol ⁻¹				
			-						
			$\begin{array}{ccc} Add \\ \bullet' \bullet \bullet \end{array} & B + \frac{1}{2}N_2 \rightarrow BN \end{array}$	∆H=-2	51kJ mol ⁻¹				
			$\square A$ NH ₃ has 3 N—H bonds broken in the react	ion and no bonds	formed				
16	Δ	78	■B N≡N bonds and H—H bonds also formed in						
10	Z	10	EC N≡N bonds and H−H bonds also formed in						
			■D N=N bonds and O-H bonds also formed in						
			A enthalpy of solution of potassium fluoride:						
17	C		E B enthalpy of formation of potassium fluorid						
	Ŭ		$\square C$ hydration energy of potassium: $K^{+}(g) \rightarrow K^{+}(aq)$		-				
			ED 1 st ionisation of potassium: $K_{(g)} \rightarrow K^{+}_{(g)} + e^{-1}$						
18	A	75	At absolute zero temperature (0 K) cry	siuis nuve per	Tect order and an				
			entropy value of zero J K ⁻¹ mol ⁻¹						
			\blacksquare A line never crosses zero into positive and $\triangle G$ is a						
19	A	89	E B when line crosses into positive ΔG value, reaction E C when line has positive ΔG value, reaction is not						
	• •		\blacksquare when line has positive $\triangle G$ value, reaction is not \blacksquare						
			· · ·	·					
			$K = \frac{[SO_3]^2}{[SO_2]^2 \times [O_2]^1} = \frac{16^2}{0.2^2 \times 0.2} =$	$\frac{100}{0.04 \times 0.2} =$	0.008 = 32000				
			[302] ∧ [02] 30.2 ∧ 0.2 ⊠A products are formed ∴ thermodynamically						
20	В	//	\square B K > 1 (much more products than reactants) and $\triangle G$						
			$\mathbb{E}C$ products are formed \therefore thermodynamically						
			Not more products in equilibrium mixture						
			$\Delta G - \Delta H = approximately zero : -T\Delta S = approx$		-				
			■ A carbon dioxide gas is released ∴ disorder	•					
21	Ν	71	⊠B hydrogen gas is released ∴ disorder increa		. .				
	U	/ -	🗷 C hydrogen gas is released ∴ disorder increa		2 .				
			${f ar D}$ disorder and ${\scriptscriptstyle \Delta}{\sf S}$ relatively unchanged as r	eaction proceeds	$s \therefore \Delta S$ approx zero				

			☑A Volume is not a con	dition for standar	d alactroda pota	tiala				
	•				•		otentiale			
22	A									
	•••		☑C concentration of 1mol l ⁻¹ is a standard condition for standard electrode potentials ☑D pressure of 1atmosphere is a standard condition for standard electrode potentials							
			■ A Cu ²⁺ are formed							
	•			, <u>a</u> 2+, ,			/ C C 2+	+20-		
23	B	54	\mathbf{E} C Cu ²⁺ iong raduced	into Cumatal i	ining with alact	$\frac{1}{2} \frac{1}{2} \frac{1}$		120		
_		U .	EC Cu ²⁺ ions reduced	thio cu metal ja	oming with elect	1.0115 Cu (aq) + 2	$Le \rightarrow Cu(s)$			
) electrons travel through wires not salt/ion bridges w step is the rate determining step: (CH ₃) ₃ CBr \rightarrow (CH ₃) ₃ C ⁺ + Br ⁻						
21	٨	71	Slow step is the rate de Slow step has only one r				ic zano onden			
24	A	71		ate = K x [(CH3)			IS ZENO UNUEN			
			► ►A reaction is not th							
	-		D no information of	•	•		of each reactor	n +		
25	B	60	ØB no information av							
			\blacksquare D as $\Delta G > 0$ then pos	•				-		
26	D	73	Temperature rise	20°C→30°C	30°C→40°C	40°C→50°C	50°C→60°C			
20	U	13	Rate	x2	x2	x2	x2			
			🗷 A termination step: f	ree radicals befor	e arrow but none	after arrow				
27	D	00	☑B propagation step: f	ree radicals on bo	th sides of the ar	row				
۲ ک	В	88	🗷 C termination step: fi	ree radicals befor	e arrow but none	after arrow				
			🗷 D initiation step: free							
			▼A C3H8 has no C=C do			•				
20		01	■ B C3H8 has no C=C do			•				
28	C	81	ØC reaction 1 is a free				philic			
			substitution reaction				Dentin 2			
			D C3H7Br has no C=C							
			☑A KOH in ethanol is				ed from C3H7Br			
29	Δ	68	E B CN^{-} ions swaps with Br in a nucleophilic substitution reaction E C $C_2H_5O^{-}$ ions swaps with Cl in a nucleophilic substitution reaction							
	/ \	00								
				D OH ⁻ ions swaps with Br in a nucleophilic substitution reaction A both ethene and Br ⁻ are attracted to positive charge both acting as nucleophiles						
					•	5	5	hiles		
30	Δ	62	B Br⁻ is attracted t	•		-	•			
50	A	n 102	E ethene is attract			-	•			
			ED ethene is attract	red to δ + on Br-E	Br ∴ ethene is a	cting as a nucle	eophile			
			A increase in number	of -OH groups in	creases both boil	ing point and visc	osity due to H bo	onds		
31	Δ	77	⊠B increase in number			-				
51	7		■C increase in number	of -OH groups \therefore	more hydrogen b	onding increas	ing in boiling poin [.]	t		
			🗷 D increase in number					nt		
			🗷 A halogenalkane would			•				
32		∆ ∩	B halogenalkane would			•				
52	U		EC halogenalkane would		-					
			D halogenalkane reac							
	_		A propanal oxidises to	• •	• •					
33	B	170	■ B propan-1-ol oxidises							
•••		/ 0	EC propan-2-ol oxidise D propanoic acid does		opanone cannot re	eact to form an e	ster			
			⊠A aldehydes form a s		h 2 4-dinitronher	vlhvdrazine				
		10	B carboxylic acids do		•	• •	ne			
34	A	16U	E esters do not form			• • •				
			D amides do not form		• •	•				
			🗷 A boiling point anal				elting point ana	alysis		
			⊠B a sharp melting p			•	• •	,		
35	В	16	SC the derivative mu		• •	•				
			≥D a low relative mo	•		•				
		1				menning point t				

		1	
			\blacksquare A C ₆ H ₅ OH will react with bases but not acids
36		61	\blacksquare B C ₆ H ₅ NH ₂ will react with acids but not bases
50	υ	01	Image: C HOC ₆ H₄COOH will react with bases but not acids
			\square D H ₂ NC ₆ H ₄ COOH will react with both acids and bases
			🗷 A Carbon only has 3 different groups attached to the central carbon
27	D	00	☑B Carbon only has 4 different groups attached to the central carbon
37	В	07	🗷 C Carbon only has 3 different groups attached to the central carbon
			🗷 D Carbon only has 3 different groups attached to the central carbon
			🗷 A Carbon atoms are relatively small but show up in X-ray crystallography
20	C	71	B Hydrogen atoms are so small they barely register in X-ray crystallography
38	C	/1	☑C Large atoms like iodine are easiest to locate in X-ray crystallography
			ED Oxygen atoms are relatively small but show up in X-ray crystallography
		C 02	🗷 A agonist: molecule which binds to receptor binding site and cause a biological response
39	C		B receptor: binding site for molecules with same pharmacophore shape
37	し	コン	■B receptor: binding site for molecules with same pharmacophore shape ■C antagonist: molecule which binds to binding site and does not cause a biological response ■D pharmacophore: particular shape which fits the binding site of recentor exactly
			⊠D pharmacophore: particular shape which fits the binding site of receptor exactly
			$oxtimes$ A -O-CH3 is polar covalent but not ionic \therefore no ionic interaction
10	C	15	⊠B no H atom attached to O atom to be a hydrogen-bond donor ☑C O atom has lone pair of electrons to be a hydrogen-bond acceptor
40	し	40	☑C O atom has lone pair of electrons to be a hydrogen-bond acceptor
			🗷 D no H atom attached to O atom to be a hydrogen-bond donor
	×.		

201	.5 Adv Higł	ner Chemistry Marking Scheme						
Long Qu	Answer	Reasoning						
1a (i)	Equal/same energy	Degenerate means the orbitals are of equal energy.						
1a (ii)	Any correct statement of Hund's Rules	ach orbital should be filled singly before a second electron fills each orbital.						
1b(i)	239nm or 2.39x10 ⁻⁷ m	$E = \frac{L \times h \times c}{\lambda} \therefore \lambda = \frac{L \times h \times c}{E} = \frac{6.02 \times 10^{23} \text{mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{502 \times 1000 \text{ J mol}^{-1}}$ $= 2.39 \times 10^{-7} \text{ m}$ $= 239 \text{ nm}$						
1b(ii)	No, wavelength of visible too short	Visible light is between the wavelength of 450nm (violet end) and 700nm (red end). The wavelength 239nm is in the UV band of the electromagnetic spectrum.						
2a	194 kJ mol ⁻¹	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ $= (1x+130) + (1x-394) - (1x-348) + (1x-110)$ $= +130 - 394 - (-348 - 110)$ $= -264 - (-458)$ $= +194 \text{ kJ mol}^{-1}$						
2b	133 J K ⁻¹ mol ⁻¹	$\Delta S^{\circ} = \Sigma S^{\circ}_{(products)} - \Sigma S^{\circ}_{(reactants)}$ $= (1\times161) + (1\times214) - (1\times44) + (1\times198)$ $= 161 + 214 - (44 + 198)$ $= 375 - 242$ $= +133 \text{ J } \text{ K}^{-1} \text{ mol}^{-1}$						
2c	1459 K	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = 0$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T\Delta S^{\circ} = \Delta H^{\circ} \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{+194 \times 1000 \text{ J mol}^{-1}}{+133 \text{ J K}^{-1} \text{ mol}^{-1}} = 1458.6 \text{ K}$						
3a (i)	1.26V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
3a(ii)	-121.59 kJ mol ⁻¹	3mol of electrons transferred between half reactions \therefore n=1 $\Delta G^{\circ} = -n \times F \times E^{\circ}$ $= -1 \times 96500 \text{ C mol}^{-1} \times 1.26\text{ V}$ $= -121590 \text{ J mol}^{-1}$ $= -121.59 \text{ kJ mol}^{-1}$						
3 b(i)	4 or IV	VO²+: Vanadium oxid no. + (-2) = +2 ∴ vanadium oxid no. = +2 - (-2) = +4						
3b(ii)	Green colour from mixture of blue and yellow	During the reaction there will be a mixture of yellow VO2 ⁺ ions and blue VO ²⁺ ions. For a short period the yellow and blue colours mix together						
3b(iii)	•	$V = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{3}4s^{2} \therefore V^{2+} = 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{3}$						
3b(iv)	Vanadium iana avidiaad/	When the stopper is removed , oxygen enters flask and reacts with vanadium ions to form blue VO ²⁺ by an oxidation reaction (oxidation number increases $2\rightarrow 4$)						
4a	Green	PPA Technique Question						
4b	hydrogen peroxide/H2O2	PPA Technique Question						
4c	octahedral	Octahedral has 4 bonds in a square planar around the central atom and 2 bonds vertically above and below the central ion.						

		···- ···-				
5a (i)	0.36	$N_2O_{4(g)} \xrightarrow{2NO_{2(g)}} 2NO_{2(g)}$ $\stackrel{1 \text{mol}}{0.12 \text{mol}} 0.24 \text{mol}$ $\therefore \text{ no of mol of } N_2O_4 \text{ at equilibrium = } 0.28 \text{mol - } 0.12 \text{mol = } 0.16 \text{mol}$ $K = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(0.24)^2}{0.16} = \frac{0.0576}{0.16} = 0.36$				
5a (ii)	Forward reaction is endothermic as decreasing temperature favours reverse reaction	Decreasing temperature favours the reverse reaction. At 127°C, K=0.36 and at 25°C, K=0.12 ∴ as temperature decreases K decrease ∴ value of K decreases when [products] decreases and [reactants] increases ∴ reverse reaction is favoured				
5b(i)	x = 7.40x10 ⁻⁴ y = 2.96x10 ⁻³	From equation: rate = k[NO] ² 2 nd order with respect to NO zero order with respect to H2 Compare 0+0: [H2]x2 but H2 is zero order ∴ no change of rate ∴ x =7.40x10 ⁻⁴ Compare 0+0: [NO]x2 but NO is 2nd order ∴ rate quadruples ∴ y =7.40x10 ⁻⁴ x4 = 2.96x10 ⁻³				
5b(ii)	185 l mol ⁻¹ s ⁻¹	Rate = k[NO] ² \therefore k = $\frac{\text{Rate}}{[NO]^2}$ = $\frac{7.40 \times 10^{-4} \text{ mol } l^{-1} \text{ s}^{-1}}{(2.00 \times 10^{-3} \text{ mol } l^{-1})^2}$ = $\frac{7.40 \times 10^{-4} \text{ mol } l^{-1} \text{ s}^{-1}}{4.00 \times 10^{-6} \text{ mol}^2 l^{-2}}$ = 185 l mol ⁻¹ s ⁻¹				
6a	-171	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
6b	-60.5	$\Delta H_{f} = \Delta H_{1} + \Delta H_{2} + \Delta H_{3} + \Delta H_{4} + \Delta H_{5}$ $= 337 + 751 + 121.5 + (-359) + (-921)$				
6c	$CuCl_2$ as ΔH_f is more negative	The more negative the value of ΔH_{f} the more stable the ionic solid.				
7a	Phenolphthalein	PPA technique question				
7b(i)	4.33x10 ⁻⁴ mol	Ignore rough titration in average: Ave titre = $\frac{8.7+8.6}{2} = \frac{17.3}{2} = 8.65 \text{ cm}^3$ no. of mol sulphuric acid = volume x concentration = 0.008651itres x 0.050mol l ⁻¹ = 0.0004325mol				
7b(ii)	8.66x10 ⁻³ mol	2NaOH + H ₂ SO ₄ → Na ₂ SO ₄ + 2H ₂ O ^{2mol} 1mol 8.66×10 ⁴ mol 4.33×10 ⁴ mol 25cm ³ of solution contains 8.66×10 ⁻⁴ mol NaOH 250cm ³ of solution contains 8.66×10 ⁻³ mol NaOH				
7b(iii)	0.01634mol or 1.63x10 ⁻² mol	no. of mol NaOH at start = volume x concentration = 0.025litres x 1.00mol l ⁻¹ = 0.025mol no. of mol NaOH reacted = 0.025mol - 8.66x10 ⁻³ mol = 0.01634mol				
7b(iv)	0.294g	1mol acetylsalicylic acid C ₉ H ₈ O ₄ = (9×12)+(8×1)+(4×16) = 108+8+64 = 180g 2NaOH + C ₉ H ₈ O ₄ → C ₇ H ₅ O ₃ Na + CH ₃ COONa + H ₂ O 2mol 1mol 0.01634mol 0.00817mol mass aspirin in 5 tablets = no. of mol × gfm = 0.00817 × 180 = 1.4706g mass aspirin in 1 tablet = 0.294g				
8a	sp²	The carbon atoms is a benzene ring have sp ² hybridisation and the electron in the $4^{\rm th}$ unhybridised p-orbital becomes part of the delocalised ring of 6 π electrons				

10c(ii)	HOC. HOCI	\backslash	CH ³ Slow	НО(HO CH CH CH CH CH HO H CH H CH H	
10d	Н Н Н Н H-C-C-C-C-C Н Н Н Н	Isomer A CH3CHClCH2 2-chlorobuta	2CH3 (CH3)	omer B 2CHCH2Cl methylpropane 2-	Isomer C (CH ₃) ₃ CCl chloro-2-methylprapan	Isomer D CH3CH2CH2CH2CI e 1-chlorobutane	
10e	3	Structu Chemica	Isomer B (CH3)2CHCH2Cl would produce three peaks on a Proton NMStructural UnitRCH2XRCH3Chemical Shift4.2-2.21.5-0.9Relative intensity23				
10f	A must be racemic B has no chiral carbon	A has a chiral carbon with four different groups attached. For isomer A to be optically inactive then the sample must have equal quantities of each optical isomer (called a racemic mixture). Isomer B is optically inactive as it lacks a chiral carbon with 4 different groups attached.					
11a	C₂H₅S	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
11b	$ \begin{pmatrix} H \\ I \\ H-C-S \\ I \\ H \end{pmatrix}^{+} or \begin{pmatrix} H \\ I \\ C-S-H \\ I \\ H \end{pmatrix}^{+} $	Empirical Formula261Peak at $m/z = 47 \therefore$ fragment has mass of 47amuAs S atom has mass or 32, remaining fragment has mass of 15 \therefore remaining fragment is CH3 with mass of 15					
11c	H H H-C-C-S-H H H	Chemical S Struc Relative Are	eak Shift/ppm cture ea under peak ogen in group	1 1.2 CH₃ 97 3	2 1.5 SH 32 1	3 2.4 CH ₂ 65 2	